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Abstract—Recently, network lasso has dawn much attention due to its remarkable performance on simultaneous clustering

and optimization. However, it usually suffers from the imperfect data (noise, missing values, etc.), and yields sub-optimal solutions.

The reason is that it finds the similar instances according to their features directly, which is usually impacted by the imperfect data,

and thus returns sub-optimal results. In this paper, we propose triangle lasso to avoid its disadvantage for graph datasets. In a graph

dataset, each instance is represented by a vertex. If two instances have many common adjacent vertices, they tend to become similar.

Although some instances are profiled by the imperfect data, it is still able to find the similar counterparts. Furthermore, we develop an

efficient algorithm based on Alternating Direction Method of Multipliers (ADMM) to obtain a moderately accurate solution. In addition,

we present a dual method to obtain the accurate solution with the low additional time consumption. We demonstrate through extensive

numerical experiments that triangle lasso is robust to the imperfect data. It usually yields a better performance than the state-of-the-art

method when performing data analysis tasks in practical scenarios.

Index Terms—Triangle lasso, robust, clustering, sum-of-norms regularization

Ç

1 INTRODUCTION

IT has been attractive to find the similarity among instan-
ces and conduct data analysis simultaneously via convex

optimization for recent years. Let us take an example to
explain this kind of tasks. Consider the price prediction of
houses in New York. Suppose that we use ridge regression
to conduct prediction tasks. We need to learn the weights of
features (cost, area, number of rooms etc) for each house.
The price of the houses situated in a district should be
predicted by using the similar or identical weights due to
the same location-based factors, e.g., school district etc.
But, those location-based factors are usually difficult to be
quantified as the additional features. Thus, it is challenging
to predict the price of houses under those location-based
factors. Recently, network lasso is proposed to conduct this
kind of tasks, and yields remarkable performance [1].

However, it is worth noting that some features of an
instance are usually missing, noisy or unreliable in practical
scenarios, which are collectively referred to as the imperfect
data in the paper. For instance, the true cost of a house is
usually a core secret for a company, which cannot be obtained

in many cases. The market expectation is usually not stable,
and has some fluctuations for a period of time. Network lasso
suffers from the imperfect data (noise, missing values etc),
and yields sub-optimal solutions. One of the reasons is that
they use those features directly to learn the unknownweights
whose accuracy is usually impaired due to such imperfect
data. It is thus challenging to learn the correct weights for a
house, andmake a precise prediction. Therefore, it is valuable
to develop a robustmethod to handle the imperfect data.

Many excellent researches have been conducted and
obtain impressive results. There are some pioneering rese-
arches in convex clustering [2], [3]. Wang et al. [2] focuses on
finding and removing the outlier features. Wang et al. [3] is
proposed to find and remove the uninformative features in
a high dimensional clustering scenario. Assuming that those
targeting features are sparse, the pioneering researches suc-
cessfully find and remove them via an l2;1 regularization.
However, their methods rely on an extra hyper-parameter for
such a regularized item. The extra need-to-tune hyper-param-
eter limits their usefulness in practical tasks. As an extension
of convex clustering, network lasso is proposed to conduct
clustering and optimization simultaneously for large graphs
[1]. It formulates the empirical loss of each vertex into the loss
function and each edge into the regularization. If the imper-
fect data exists, the formulations of the vertex and edge are
inaccurate. Due to such inaccuracy, network lasso returns
sub-optimal solutions.As the pioneering researches, [4] inves-
tigates the conditions on the network topology to obtain the
accurate clustering result in the network lasso. However,
given a network topology, it is still not able to handle vertices
with the imperfect data. Additionally, we find that it is not
efficient for those previous methods, which impedes them to
be used in the practical scenarios. In a nutshell, it is important
to propose a robust method to handle those imperfect data
andmeanwhile yield the solution efficiently.
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In the paper, we introduce triangle lasso to conduct data
analysis and clustering simultaneously via convex optimi-
zation. Triangle lasso re-organizes a dataset as a graph or
network.1 Each instance is represented by a vertex. If two
instances are closely related in a data analysis task, they are
connected by an edge. Here, the related has various meanings
for specific tasks. For example, two verticesmay be connected
if an vertex is one of the k nearest neighbours of the other one.
Our key idea is illustrated in Fig. 1. If there is a shared neigh-
bour between a vertex and its direct adjacency, a triangle
exists. It implies that the vertices may be similar. If two verti-
ces exist in multiple triangles, they tend to be very similar
because that they have many shared neighbours. Benefiting
from the triangles, triangle lasso is robust to the imperfect
values. Although a vertex, e.g., vi has some noisy values, we
can still find its similar counterpart vj and vk via their shared
neighbours.

It is worthy noting that the neighbouring information
of a vertex is formulated into a sum-of-norms regularization
in triangle lasso. It is challenging to solve the triangle lasso
efficiently due to three reasons. First, it is non-separable
for the weights of the adjacent vertices. If a vertex has a large
number of neighbours, it is time-consuming to obtain the opti-
mal weights. Second, the objective function is non-smooth at
the optimumwhenmore than one vertex belongs to a cluster.
In triangle lasso, if two vertices belong to a cluster, their
weights are identical. But, the sum-of-norms regularization
implies that the objective function is non-differentiable in the
case. There usually exist a large number of non-smooth points
for a specific task. Third, we have to optimize a large number
of variables, i.e., OðndÞ, where n is the number of instances,
and d is the number of features. In the paper, we develop an
efficient method based on ADMM to obtain a moderately
accurate solution. After that, we transform the triangle lasso
to an easy-to-solve Second Order Cone Programming (SOCP)
problem in the dual space. Then, we propose a dual method
to obtain the accurate solution efficiently. Finally, we use the
learned weights to conduct various data analysis tasks.
Our contributions are outlined as follows:

� We formulate the triangle lasso as a general robust
optimization framework.

� We provide an ADMM method to yield the moder-
ately accurate solution, and develop a dual method
to obtain the accurate solution efficiently.

� We demonstrate that triangle lasso is robust to the
imperfect data, and yields the solution efficiently
according to empirical studies.

The rest of paper is organized as follows. Section 2 out-
lines the related work. Section 3 presents the formulation of
triangle lasso. Section 4 presents our ADMM method which
obtains a moderately accurate solution. Section 5 presents
the dual method which obtains the accurate solution.
Section 6 discusses the time complexity of our proposed
methods. Section 7 presents the evaluation studies. Section 8
concludes the paper.

2 RELATED WORK

Recently, there are a lot of excellent researches on clustering
and data analysis simultaneously, and they obtain impres-
sive results.

2.1 Convex Clustering

As a specific field of triangle lasso, convex clustering has
drawnmany attentions [2], [3], [5], [6], [7], [8], [9]. [5] proposes
a new stochastic incremental algorithm to conduct convex
clustering. Chi and Lange [6] proposes a splitting method to
conduct convex clustering via ADMM. Han and Zhang [7]
proposes a reduction technique to conduct graph-based
convex clustering. Tan and Witten [8] investigates the statisti-
cal properties of convex clustering. Chi et al. [9] formulates
a new variant of convex clustering, which conducts clustering
on instances and features simultaneously. Comparing with
our methods, those previous researches focus on improving
the efficiency of convex clustering, which cannot handle the
imperfect data. Wang et al. [2] uses an l2;1 regularization to
pick noisy featureswhen conducting convex clustering.Wang
et al. [3] investigates to remove sparse outlier or uninformative
features when conducting convex clustering. However, both
of them uses more than one convex regularized items in the
formulation, which needs to tune multiple hyper-parameters
in practical scenarios. Specifically, the previous methods
including [2], [3] focus on being robust to the imperfect data.
They usually add a new regularized item, e.g., l1-norm regu-
larization or l2;1-norm regularization to obtain a sparse solu-
tion. Although it is effective, the newly-added regularized
item usually need to tune a hyper-parameter for the regular-
ized item,which limits their use in the practical scenarios.

2.2 Network Lasso

As the extension of convex clustering, network lasso is good
at conducting clustering and optimization simultaneously
[1], [4], [10]. As a general framework, network lasso yields
remarkable performance in various machine learning tasks
[1], [10]. However, its solution is easily impacted by the
imperfect data, and yields sub-optimal solutions in the
practical tasks. Jung [4] investigates the network topology
in order to obtain accurate solution. Triangle lasso aims
to obtain a robust solution with inaccurate vertices for
a known network topology, which is orthogonal to [4].

3 PROBLEM FORMULATION

In this section, we first present the formulation of the triangle
lasso. Then, we instantiate it in some applications, and pres-
ent the result in a demo example. After that, we present the
workflow of the triangle lasso. Finally, we shows the symbols
used in the paper and their notations.

Fig. 1. The noisy vertex vi is more similar to vj than to vk because there
are two shared neighbors between them.

1. The graph and network have equivalentmeanings in the paper.
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3.1 Formulation

We formulate the triangle lasso as an unconstrained convex
optimization problem

min
X2Rn�d

X
vi2V

fiðXi; yiÞ þ a
X
eij2E

wijgi;jðXi;XjÞ:

Given a graph, V represents the vertex set containing n
vertices, and E represents the edge set containing m edges.
yi represents the response of the ith instance, i.e., Ai. wij

denotes the weight for the edge eij, which could be speci-
fically defined according to the task in practical. a > 0 is
the regularization coefficient. It is highlighted that fiðXi; yiÞ
becomes fiðXiÞ in the unsuperivised learning tasks such as
clustering because that there is no response for an instance
in the unsupervised learning tasks. We let

gi;jðXi;XjÞ ¼ g0ðXi;XjÞ þ g1ðXi;NðXjÞÞ þ g2ðXj;NðXiÞÞ;
hold, where Nð�Þ represents the neighbour set of a vertex.
fiðXi; yiÞ represents the empirical loss on the vertex vi. As
a regularization, g0, g1 and g2 can have various formula-
tions. In the paper, we focus on the sum-of-norms regulari-
zation, i.e.,

gi;jðXi;XjÞ ¼ kXi �Xjk þ
X

kj2NðXjÞ;ði;kjÞ2E
kXi �Xkjk

þ
X

ki2NðXiÞ;ðj;kiÞ2E
kXj �Xkik:

Since gi;j is the sum of l2 norms, i.e., l1=l2 norm, we
denote it by ð1; 2Þ-norm. Given n vertices and m edges,
define an auxiliary matrix Q 2 Rm�n. The non-zero elements
of a row of Q represent an edge. If the edge is eij, and it is
represented by the kth row of Q, we have

Qk ¼ 01�ði�1Þ;awijqij; 01�ðj�i�1Þ;�awijqij; 01�n�j

� �
;

where qij is a positive known integer for a known graph.
Triangle lasso is finally formulated as

min
X2Rn�d

Xn
i¼1

fiðXi; yiÞ þ kQXk1;2: (1)

Note that a is a hyper-parameter for triangle lasso, and it
can be varied in order to control the similarity between instan-
ces. Additionally, the globalminimumof (1) is denoted byX�.
The ith rowofX� with 1 � i � n is the optimalweights for the

ith instance. It isworthy noting that the regularization encour-
ages the similar instances to use the similar or even identical
weights. If some rows of X� are identical, it means that the
corresponding instances belong to a cluster. As illustrated
in Fig. 2, we can obtain different clustering results by varying
a.2 When a is very small, each vertex represents a cluster.
With the increase of a, more vertices are fused into a cluster.

We explain the model by using an example which is
illustrated in Fig. 3. The vertex v5 is profiled by using noisy
data. As we have shown, we obtain

g1;2 ¼ kX1 �X2k
g1;4 ¼ kX1 �X4k þ kX1 �X5k þ kX4 �X5k
g1;5 ¼ kX1 �X5k þ kX1 �X4k þ kX5 �X4k
g3;4 ¼ kX3 �X4k
g4;5 ¼ kX4 �X5k þ kX4 �X1k þ kX5 �X1k:

The regularized term isX
eij2E

gi;jðXi;XjÞ ¼ kX1 �X2k þ 3kX1 �X4k

þ 3kX1 �X5k þ kX3 �X4k þ 3kX4 �X5k:
(2)

For similarity, we consider the case of no weights for edges,
and further let a ¼ 1. Q is

Q ¼

1 �1 0 0 0
3 0 0 �3 0
3 0 0 0 �3
0 0 1 �1 0
0 0 0 3 �3

0
BBBB@

1
CCCCA:

As illustrated in Fig. 3, the vertices v1, v4 and v5 exist in a
triangle. The difference of their weights, namely kX1 �X4k,
kX1 �X5k and kX4 �X5k are penalized more than others.
The large penalization on the difference of kX1 �X5k and
kX4 �X5k makes X5 is close to X1 and X4. Although v5 is
profiled by noisy data, we can still find its similar counter-
parts v1, v4. More generally, if some instances have missing
values, those values are usually filled by using the mean
value, the maximal value, the minimal value of the corre-
sponding features, or the constant 0. Comparing with the true
values, those estimated values lead to noise. The noise impairs
the performance of many classic methods when conducting
data analysis tasks on those values directly. Note that triangle
lasso does not only use the values, but also use the relation
between different instances. If the vertices have many com-
mon neighbors in the graph, they tend to be similar even
though they are represented by using noisy values. That is the
reasonwhy triangle lasso is robust to the imperfect data.

Fig. 2. The prediction of the house price in the Greater Sacramento area.
With the increase of a, more houses are fused to a cluster. The houses
located in a cluster use an identical weight to predict their prices.

Fig. 3. If an edge exists in many triangles, its vertices are penalized more
than other vertices. Thus, their weights tends to be more similar or even
identical than others.

2. The details are presented in the empirical studies.
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Triangle lasso is a general and robust framework to simul-
taneously conduct clustering and optimization for various
tasks. The whole workflow is presented in Fig. 4. First, a
graph is constructed to represent the dataset. Second, we
obtain a convex optimization problem by formulating
a specific data analysis task to the triangle lasso. Third, we
provide two methods to solve the triangle lasso. Finally,
we obtain the solution of the triangle lasso, and use it to
complete data analysis tasks. Note that the graph or net-
work datasets are the main targeting datasets for triangle
lasso. For a graph or network dataset, Q can be obtained
trivially. Otherwise, we represent the dataset as a graph
as follows:

Case 1. If the dataset does not contain the imperfect data
(missing, noisy, or unreliable values), we run K-Nearest
Neighbours (KNN) method to find the K nearest neigh-
bours for each an instance. After that, we can obtain the
graph by the following rules.

� Each instance is denoted by a vertex.
� If an instance is one of the K nearest neighbours of

the other instance, then the vertices corresponding to
them are connected by an edge.

Case 2. If the dataset contains imperfect data, or contains
redundant features in the high dimensional scenarios, we
run the dimension reduction methods such as Principal
Component Analysis (PCA) or feature selection to improve
the quality of the dataset. Then, as mentioned above, we
use KNN to find the K nearest neighbours for each an
instance, and obtain the graph. The procedure is suitable
to both supervised learning and unsupervised learning.
Additonally, the Q matrix in (1) plays an essential role in
the triangle lasso. Each element of Q contains a, wij and
qij. a is a hyper-parameter which needs to be given before
optimizing the formulation. wij and qij are closely related
to the graph. When a dataset is represented as a graph, we
need to determine wij and qij in order to obtain Q. wij is
the weight of the edge eij, which can be used to measure
the importance of the edge. Some literatures recommend
wij ¼ expð�% Xi �Xj

�� ��2
2
Þ where % is a non-negative con-

stant [6], [9], [11]. When % ¼ 0, it represents the uniform
weights. When % > 0, it represents the Gaussian kernel.
Besides, qij measures the similiarity of nodes vi and vj due
to their common adjacent nodes.

3.2 Applications

The previous researches including network lasso and convex
clustering are the special cases of the triangle lasso. If we
force gi;jðXi;XjÞ ¼ g0ðXi;XjÞ, the triangle lasso degenerates
to the network lasso. If we further force fiðXiÞ ¼ kXi �Aik22,

the triangle lasso degenerates to the convex clustering.
Specifically, we take the ridge regression and convex cluster-
ing as examples to illustrated triangle lasso inmore details.

Ridge Regression. In a classic ridge regression task, the loss
function is

min
x2R1�d

1

n

Xn
i¼1

kAix
T � yik22 þ gkxk22:

Here, Ai 2 R1�d represents the ith instance in the data
matrix, y 2 Rn�1 is the response matrix, and x is the need-
to-learn weight. n represents the number of instances, and g

with g > 0 is the regularization coefficient to avoid overfit-
ting. Note that g is a hyper-parameter introduced by the
formulation of the ridge regression, not introduced by trian-
gle lasso. We thus instantiate (1) as

min
X2Rn�d

1

n

Xn
i¼1

kAiX
T
i � yik22 þ gkXk2F þ kQXk1;2:

Here, A 2 Rn�d is the stack of the instances Ai with
1 � i � n. X is the stack of weights of those instances. That
is, the ith row of X, namely Xi 2 R1�d is the weight of Ai. In
this case,

fiðXi; yiÞ ¼ 1

n
kAiX

T
i � yik22 þ

g

n
kXik22:

Convex Clustering. In a convex clustering task, the loss
function is

min
X2Rn�d

kX �Ak2F þ a
X

1�i < j�m

kXi �Xjk2:

Here, X is the need-to-learn weights. m is the number of
edges in the graph. awith a > 0 is used to control the num-
ber of clusters. Note that a is a parameter in the formulation
of convex clustering, which can be varied to control the
number of clusters. Different from the case of ridge regres-
sion, a is usually increased heuristically in order to obtain a
cluster path. Additionally, the ith row of the optimal X� is
the label of the instance Ai. If two instances Ai and Aj have
the identical labels, it means that they belong to a cluster.
In this case,

fiðXiÞ ¼ kXi �Aik22:
The final formulation of convex clustering is

min
X2Rn�d

kX �Ak2F þ kQXk1;2:

Note that triangle lasso generally outperforms the
classic convex clustering on recovering the correct clus-
tering membership. We present more explanations from
two views.

� Intuitively, triangle lasso uses the sum-of-norms regu-
larization to obtain the clustering result, which is simi-
lar to the convex clustering. On the other hand,
triangle lasso considers the neighbouring information
of vertices, and uses it in the regularization. Since
network science has claimed that the neighbours

Fig. 4. The illustration of the workflow of triangle lasso.
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of vertices is essential to measure its importance in
a graph [12], triangle lasso has advantages on finding
the similarity among instances over the classic convex
clustering.

� Mathematically, triangle lasso gives large weights to
a regularized item (see the Equation (2)), if they have
many common neighbours. That is, such the regular-
ized item is punished more than other items during
the optimization procedure, which makes the verti-
ces tend to be similar or even identical. This is differ-
ent from the convex clustering because that convex
clustering views each a regularized item equally,
which ignores their neighbouring relationship.

Demo Example. To make it more clear, we take the house
price prediction as a demo example to explain triangle lasso.
This example is one of empirical studies in Section 7.We need
to predict the price of houses in the Greater Sacramento
area by using a ridge regression model. Our target is to learn
the weight for each house. Generally, the houses, which are
located to a district, should use similar or identical weights.
Those located in different districts should use different
weights. As illustrated in Fig. 2, triangle lasso will yield
a weight for each house, and those weights can be used to as
a label to obtain multiple clusters. The houses belonging to
a cluster use an identical weight. We can adjust a to obtain
different number of clusters. With the increase of a, more
houses are fused to a cluster.

3.3 Symbols and Their Notations

To make it easy to read, we present the symbols and their
notations in Table 1. Since the vector operation is usually
easier to be understood and performed than the matrix
operation. We tend to use vector operation replacing of the
matrix operation in the paper equivalently. In other words,
when we need to handle a matrix, we usually use its column
stacking vectorization replacing of itself. For example, when
we need to obtain the gradient of with respect to a matrix,
we usually use @fðvecðXÞÞ to replace @fðXÞ for simplicity.
In the paper, a matrix is viewed equivalent to its vectoriza-
tion. For example, fðXÞ is equivalent to fðvecðXÞÞ because
that we can transform them without any ambiguity. Finally,
we use the notation fðXÞ in both supervised and unsuper-
vised learning tasks for math brevity.

4 ADMMMETHOD FOR THE MODERATELY

ACCURATE SOLUTION

In this section, we present our ADMM method to solve tri-
angle lasso. First, we present the details of our ADMM
method as a general framework. Second, we present an
example to make our method easy to understand. Finally,
we discuss the convergence and the stopping criterion
of our method.

4.1 Details

Before presentation of our method, we need to re-formulate
the unconstrained optimization (1) to be a constrained prob-
lem equivalently

min
X2Rn�d;Z2Rm�d

fðXÞ þ gðZÞ; (3)

subject to:

QX � Z ¼ 0;

where fðXÞ ¼ Pn
i¼1 fiðXiÞ and gðZÞ ¼ kZk1;2. Suppose the

Lagrangian dual variable is denoted by U with U 2 Rn�d. Its
augmented Lagrangian multiplier is

LrðX;Z;UÞ
¼ fðXÞ þ gðZÞ þ 11�nðU � ðQX � ZÞÞ1p�1 þ r

2
kQX � Zk2F ;

where r is a positive number.
Update ofX. The basic update ofX is

Xtþ1 ¼ argmin
X

LrðX;Zt; UtÞ;

where t represents the tth iteration. Suppose hðXÞ ¼
11�nðUt � ðQX � ZtÞÞ1p�1 þ r

2 kQX � Ztk2F . Discarding con-
stant items, we obtain

Xtþ1 ¼ argmin
X

fðXÞ þ hðXÞ: (4)

Apparently, hðXÞ is strongly convex and smooth. Therefore,
the hardness of the update ofX is dominated by fðXÞ.

Convex case. If fðXÞ is convex, it is easy to know that
fðXÞ þ hðXÞ is convex too. Thus, it is not difficult to obtain
Xtþ1 by solving the convex optimization (4). For a general
convex case, we can update X by solving the following
equality:

TABLE 1
The Symbols and Their Notations

Symbols Notations

V The vertex set containing n vertices
vi The ith vertex
E The edge set containingm edges
eij The edge connecting vi and vj
A The data matrix
Ai The ith instance
yi The response of Ai

X The weight matrix
Xi The weights of the vi
NðXiÞ The neighbours ofXi

wij The weight corresponding to the edge eij

f�ð�Þ The convex conjugate of f
vecð�Þ The column stacking vectorization
	 The kronecker product
� The element-wise product
k � k The l2 norm of a matrix defaultly
k � kF The Frobenius norm of a matrix
k � k� The dual norm
1 The matrix whose elements are 1
Id The d� d unit matrix
a The regularization coefficient
t The tth iteration of ADMM
r The step length of ADMM
@ The sub-gradient operator
�;U The dual variable
�i The ith row of �
Prox(�) The proximal operator
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@fðXtþ1Þ þ @hðXtþ1Þ ¼ 0;

where @ represents the sub-gradient operator.
Non-convex case. If fðXÞ is non-convex, fðXÞ þ hðXÞ

may not be convex. Thus, the global minimum of (4) is
not guaranteed, and we have to obtain a local minimum.
Considering that the non-convex optimization may be
much more difficult than the convex case, the update of X
may be time-consuming. Since the Lagrangian dual of (4) is
always convex, we updateX via the dual problem of (4).

Before presentation of the method, we need to transform
(4) to be a constrained problem equivalently

min
X;Y

fðY Þ þ hðXÞ;

subject to:

Y �X ¼ 0:

Its Lagrangian multiplier is

LðY;X; �Þ ¼ fðY Þ þ hðXÞ þ 11�nð� � ðY �XÞÞ1p�1

¼ fðvecðY ÞÞ þ hðvecðXÞÞ þ vecTð�ÞvecðY Þ
� vecTð�ÞvecðXÞ;

where vecð�Þ represents the column stacking vectorization of
a matrix. Therefore, the Lagrangian dual is

Dðvecð�ÞÞ ¼ inf
vecðY Þ

fðvecðY ÞÞ þ vecTð�ÞvecðY Þ

þ inf
vecðXÞ

hðvecðXÞÞ � vecTð�ÞvecðXÞ

¼ �f�ð�vecð�ÞÞ � h�ðvecð�ÞÞ;

where f�ð�Þ is the convex conjugate of fð�Þ, and h�ð�Þ is the
convex conjugate of hð�Þ. Generally, the convex conjugate
function f�ðxÞ is defined as f�ðyÞ ¼ supxðyTx� fðxÞÞ. Thus,
the dual problem is

min
�

f�ð�vecð�ÞÞ þ h�ðvecð�ÞÞ:

Since the dual problem is always convex, it is easy to obtain
its global minimum ��. According to the KKT conditions,
we obtainXtþ1 by solving

@hðXtþ1Þ � �� ¼ 0:

In some non-convex cases of fðXÞ, we can still obtain the
global minimum when there is no duality gap, i.e., strong
duality. There are various methods to verify whether there
is duality gap. It is out of the scope of the paper, we recom-
mend readers to refer the related books [13].

Update of Z. gðZÞ is a sum-of-norms regularization, which
is convex but not smooth. It is not differentiable when
arbitrary two rows of Z are identical. Unfortunately, we
encourage the rows of Z becomes identical in order to find
the similar instances. Therefore, it is non-trivial to obtain
the global minimum Z� in the triangle lasso. In the paper,
we obtain the closed form of Z� via the proximal operator
of a sum-of-norms function.

The basic update of Z is

Ztþ1 ¼ argmin
Z

LrðXtþ1; Z; UtÞ

¼ argmin
Z

gðZÞ � 11�nðUt � ZÞ1p�1 þ r

2
kQXtþ1 � Zk2F :

Discarding the constant item, we obtain

vecðZtþ1Þ
¼ argmin

vecðZÞ
gðvecðZÞÞ � vecTðUtÞvecðZÞ

þ r

2
vecTðZÞvecðZÞ � 2vecTðQXtþ1ÞvecðZÞ� �

¼ argmin
vecðZÞ

gðvecðZÞÞ

þ r

2
vecðZÞ � vec QXtþ1

� �þ 1

r
vecðUtÞ

� �����
����
2

¼ Proxr;g vecðQXtþ1Þ þ 1

r
vecðUtÞ

� �
:

Proxr;gð�Þ is the proximal operator of gð�Þ with the efficient r
which is defined as: Proxn;fðvÞ ¼ argminx fðxÞ þ n

2 kx� vk2.
Considering gðZÞ is a sum-of-norms function, its proximal
operator has a closed form [14], that is

Ztþ1
i ¼ ½Proxr;gðZtþ1Þ
i

¼ 1� 1

k rQXtþ1 þ Utð Þik
� �

þ
QXtþ1 þ 1

r
Ut

� �
i

¼ max 0; 1� 1

k rQXtþ1 þ Utð Þik
� �

QXtþ1 þ 1

r
Ut

� �
i

:

Here, the subscript ‘þ’ represents non-negative value for
each element in the matrix. The subscript ‘i’ with 1 � i � m
represents the ith row of a matrix. If some elements are
negative, their values will be set to be zeros. Otherwise, the
positive value will be reserved.

Update of U . U is updated by the following rule:

Utþ1 ¼ Ut þ rðQXtþ1 � Ztþ1Þ: (5)

4.2 Examples

To make our ADMM easy to understand, we take the ridge
regression as an example to show the details. As we have
shown in Section 3, the optimization objective function is

min
X2Rn�d

Xn
i¼1

kAiX
T
i � yik22 þ gkXk2F þ kQXk1;2:

We thus obtain fðXÞ ¼ Pn
i¼1 kAiX

T
i � yik22 þ gkXk2F which

is convex and smooth. Therefore, the update of Xtþ1 is to
solve the following equalities:

ðAiX
T
i � yiÞAi þ gXi ¼ 0; 1 � i � n:

The update of Ztþ1 is independent to fðXÞ, and Utþ1 is easy
to understand. We do not re-write them again.

4.3 Convergence and Stopping Criterion

When fðXÞ and gðZÞ are convex, the ADMMmethod is con-
vergent [15]. Recently, many researches have investigated
the convergence of ADMM [16], [17]. But, it is non-trivial
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to obtain the convergence rate for a general fðXÞ and gðZÞ.
In triangle lasso, gðZÞ is convex but not smooth. The conver-
gence rate is impacted by the convexity of fðXÞ and the
matrix Q. Many previous researches have claimed that
if fðXÞ is smooth and Q is row full rank, the ADMM will
obtain a linear convergence rate [18].

The basic ADMM has its stopping criterion [15]. But, we
can re-define the stopping criterion of ADMM in triangle
lasso for some specific tasks to gain a high efficiency. Taking
convex clustering as an example, we do not care the specific
value of X. All we want to obtain is the clustering result.
If two rows of X are identical, the corresponding instances
belong to a cluster. If the clustering result keeps same
between two iterations, we can stop the method when X is
close to the minimum. Finally, our ADMM method is illus-
trated in Algorithm 1.

Algorithm 1. ADMM for the Triangle Lasso

Require: The data matrix A 2 Rn�d, and a positive a. t ¼ 0.
1: InitializeX0, Z0, and U0.
2: for Stopping criterion is not satisfied do
3: if fðXÞ is convex then
4: UpdateXtþ1 by solving @fðXtþ1Þ þ @hðXtþ1Þ ¼ 0.
5: if fðXÞ is non-convex then
6: �� ¼ argmin� f

�ð�vecð�ÞÞ þ h�ðvecð�ÞÞ.
7: UpdateXtþ1 by solving @hðXtþ1Þ � �� ¼ 0.

8: Ztþ1
i ¼ max 0; 1� 1

k rQXtþ1þUtð Þik
� �

QXtþ1 þ 1
r
Ut

	 

i

with 1 � i � m.
9: Utþ1 ¼ Ut þ rðQXtþ1 � Ztþ1Þ.
10: t ¼ tþ 1;
11: return The final value ofX.

5 DUAL METHOD FOR THE ACCURATE SOLUTION

Although our ADMM is efficient to yield a moderately
accurate solution, it is necessary to provide an efficient
method to obtain the accurate solution in some applications.
In the section, we transform (1) to be a second-order cone
programming problem, and develop a method to solve it
in the dual space. First, we first present the details of our
Dual method. Second, we use an example to explain our
dual method.

5.1 Details

We first re-formulate (1) to be a constrained optimization
problem equivalently.

min
X;Z

fðXÞ þ gðZÞ;

subject to

vecðQXÞ � vecðZÞ ¼ 0:

Its Lagrangian multiplier is

LðX;Z; �Þ ¼ fðXÞ þ gðZÞ þ vecTð�ÞðvecðQXÞ � vecðZÞÞ:

Thus, the dual optimization objective function is

Dð�Þ ¼ inf
X

fðvecðXÞÞ þ vecTð�ÞvecðQXÞ
þ inf

Z
gðZÞ � vecTð�ÞvecðZÞ

¼ inf
X

fðvecðXÞÞ þ vecTð�ÞððId 	QÞvecðXÞÞ

þ inf
Z

Xm
i¼1

giðZiÞ � �iZ
T
i

¼ �f�ð�vecTð�ÞðId 	QÞÞ �
Xm
i¼1

g�i ð�iÞ:

Here, Zi and �i represent the ith row of Z and �, respec-
tively. gið�iÞ ¼ k�ik holds, and g�i ð�iÞ is its convex conjugate.
Thus, we obtain

g�i ð�iÞ ¼ 0; k�ik� � 1
1; otherwise;

�

where k � k� denotes the dual norm of k � k. Since the dual
norm of the l2 norm is still the l2 norm, its dual problem is

min
�

f�ð�vecTð�ÞðId 	QÞÞ; (6)

subject to

k�ik2 � 1; 1 � i � m:

After that, we can obtain the optimalX� by solving

@fðvecðX�ÞÞ þ ðId 	QÞTvecð��Þ ¼ 0: (7)

Here, �� is the minimizer of (6). Since the conjugate function
f�ð�Þ is always convex no matter whether fð�Þ is convex.
The dual problem (6) is easier to be solved than the primal
problem. If there is no duality gap between (1) and (6), the
global minimum of the primal problem (1) can be obtained
from the solution of the dual problem (6) according to (7).

Theorem 1. The conjugate of the sum of the independent convex
functions is the sum of their conjugates. Here, “independent”
means that they have different variables [19].

According to Theorem 1, if fðxÞ is separable, that is,
fðX1; . . . ; Xi; . . . ; XmÞ ¼

Pm
i¼1 fiðXiÞ, we have f�ðX1; . . . ;

Xi; . . . ; XmÞ ¼
Pm

i¼1 f
�
i ðXiÞ. We can obtain the solution of (6)

by solving each component f�i ð�Þ with 1 � i � m indepen-
dently. But, when the fðxÞ is not separable, we have to solve
(6) as an entire problem. Unfortunately, it may be time-
consuming to solve (6) for a large dense graph because that
we have to optimize a large number of variables, i.e., OðmdÞ.
But, we can divide the graph to multiple sub-graphs,
and solve (6) for each sub-graph. Repeating those steps for
different graph partitions, we can refine the final solution
of (6). Finally, the details of our dual method is illustrated in
Algorithm 2.

Algorithm 2. Dual Method for the Triangle Lasso

Require: The datamatrixA 2 Rn�d, the graph G, and a positive a.
1: Solve (6) for G, and obtain ��.
2: Obtain the optimalX� by solving (7).

1616 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. 8, AUGUST 2019



5.2 Example

To make it easy to understand, we take the ridge regression
as an example to show the details of the method. As we have
shown in Section 3, the optimization objective function is

min
X2Rn�d

Xn
i¼1

kAiX
T
i � yik22 þ gkXk2F þ kQXk1;2:

We thus obtain

fðvecðXÞÞ ¼
Xn
i¼1

kAiX
T
i � yik22 þ gkXk2F

¼ vecTðXÞVvecðXÞ � 2FvecðXÞ:

Here, D ¼ ð11�d 	 InÞdiagðvecðAÞÞ, V ¼ DTDþ gInd and
F ¼ yTD. diagðvecðAÞÞ yields a diagional matrix consisting
of vecðAÞ. Discarding the constant item, we obtain

f�ðuÞ ¼ 1

4
uTV�1u þ 4FV�1u
� �

:

Substituting u with �ðId 	QT Þvecð�Þ, we obtain the equiva-
lent formulation is

min
�2Rm�d

vecTð�ÞðId 	QÞV�1ðId 	QÞTvecð�Þ

� 4FV�1ðId 	QÞTvecð�Þ;
subject to

k�ik2 � 1; 1 � i � m:

After solving this equivalent optimization problem,we obtain
the optimal �, namely ��. Finally, the optimalX is

vecðX�Þ ¼ 1

2
V�1 �ðId 	QTÞvecð��Þ þ 2FT

� �
:

6 COMPLEXITY ANALYSIS

In this section, we analyze the time complexity of the pro-
posedmethods, i.e., theADMMmethod and the dualmethod,
for the case of convex fð�Þ.

6.1 Time Complexity of the ADMM Method

Consider the ADMM method. It is time-consuming for the
calculation of the gradient rather than the matrix multi-
plication. The time complexity due to the calculation of
the gradient per iteration is OðndÞ. Note that the number of
the iterations dominates the total time complexity of the
ADMM method. For example, if the number of iterations is
T , the total time complexity is OðTndÞ. Generally, the large
number of iterations leads to a relatively accurate solution,
which leads to high time complexity. Before presenting

the time complexity formally, we introduce some new nota-

tions. wt 2 Rðndþ2mdÞ�1 yielded by ADMM at the tth iteration
is defined as

wt :¼ vecT ðXtÞ; vecT ðZtÞ; vecT ð�tÞ� �
:

Given a vector w 2 Rðndþ2mdÞ�1, wk k2H is defined as

wk k2H :¼ wTHw;

whereH is defined by

H :¼
0nd�nd

rImd
1
r
Imd

0
@

1
A:

Thus, when fð�Þ is convex, the total time complexity of our
ADMMmethod is presented as the following theorem.

Theorem 2. When our ADMM is convergent satisfying kwt�
wtþ1k2H � �, the total time complexity of our ADMM is O nd

�

� �
.

Proof. He and Yuan [20] proves that kwt � wtþ1k2H �
1

tþ1 kw0 � w�k2H holds when the Douglas-Rachford ADMM
is performed for t iterations (Theorem 5.1 in [20]). Our
ADMM is its special case when fð�Þ is convex. Thus, given
an � > 0, to obtain kwt � wtþ1k2H � �, our ADMM needs
to be run for 1

� kw0 � w�k2H � 1 iterations. Since the time
complexity per iteration is OðndÞ, and kw0 � w�k2H is
a constant, the total time complexity is Oðnd� Þ. tu

6.2 Time Complexity of the Dual Method

Consider the dual method. Before presenting the details
of the complexity analysis. Let us present some basic defi-
nitions, which are widely used to analyze the perfor-
mance of an optimization method theoretically [21], [22],
[23], [24].

Definition 1 (z-smooth). A function f : X 7! R is z (z > 0)
smooth, if and only if, for any vecoters x 2 X and y 2 X , we
have fðyÞ � fðxÞ þ rfðxÞ; y� xh i þ z

2 y� xk k2.
Definition 2 (&-strongly convex). A function f : X 7! R is &

(& > 0) strongly convex, if and only if, for any vectors x 2 X
and y 2 X , we have fðyÞ � fðxÞ þ rfðxÞ; y� xh i þ &

2 y� xk k2.
Definition 3. If a function fð�Þ is z-smooth and &-strongly

convex, its condition number k is defined by k :¼ z
&
.

There are many tasks whose optimization objective func-
tion is smooth and strongly convex. Those tasks includze
convex clustering, ridge regression, l2 norm regularized
logistic regression etc. We recommend to [22] for more
details. When fð�Þ is z-smooth and &-strongly convex, its
convex conjugate function f�ð�Þ is thus 1

&
-smooth and

1
z
-strongly convex (Lemma 2.19 in [23]). The condition num-

ber of f�ð�Þ is k ¼ z
&
. Additionally, there are various optimi-

zation methods to solve the dual problem (6). Since
Nesterov optimal method [25] is one of the widely used
optimization methods, we use it to solve the dual problem.

Theorem 3. When the Nesterov optimal method is used to solve
the dual problem (6), and obtains kvecð�tÞ � vecð��Þk � � for
a given positive �, then the total time complexity is O md

�

ffiffiffi
k

p� �
.

Proof. When we use Nesterov optimal method to solve the
dual problem, the number of iterations is required to be
Oð1�

ffiffiffi
k

p Þ for kvecð�tÞ � vecð��Þk � � (Corollary 1 in [26]).
Furthermore, the Nesterov optimal method performs a
gradient descent per iteration, which leads to OðmdÞ time
complexity. Thus, the total time complexity is O md

�

ffiffiffi
k

p� �
.tu

7 EMPIRICAL STUDIES

In this section, we conduct empirical studies to evaluate tri-
angle lasso on the robustness and efficiency. First, we

ZHAO ETAL.: TRIANGLE LASSO FOR SIMULTANEOUS CLUSTERING AND OPTIMIZATION IN GRAPH DATASETS 1617



present the settings of the experiments. Second, we evaluate
the robustness and efficiency of triangle lasso by conducting
prediction tasks. Third, we evaluate the quality of the clus-
ter path by conducting convex clustering with triangle lasso.
After that, we evaluate the efficiency of our methods in
various network topologies. Finally, we use triangle lasso to
conduct community detection in order to show that triangle
lasso is able to perform a general data analysis task.

7.1 Settings

Model and Algorithms. As we have shown in the previous
section, we conduct empirically studies by conducting
ridge regression and convex clustering tasks. The weights
of edges, i.e., wij in Q is set to be negatively proportional
to the distance between the vertices. All the algorithms are
implemented by using Matlab 2015b and the solver CVX
[27]. The hardware is a server equipped with an i7-4790
CPU and 20 GB memory.

The total compared algorithms are:

� Network lasso [1]. This is the state-of-the-art method
to conduct data analysis and clustering simulta-
neously. Both network lasso and triangle lasso can
be used as a general framework. Thus, we compare
the triangle lasso with it in the prediction tasks.

� AMA [6]. This is the state-of-the-art method to
conduct convex clustering. Convex clustering is
a special case of the network lasso and triangle lasso.
We compare triangle lasso with it in the convex clus-
tering task.

� Triangle lasso-basic ADMM. This is the basic version
of ADMM which is used to solve triangle lasso in the
evaluations. We use it as the baseline to compare our
algorithms and other state-of-the-art methods.

� Triangle lasso-ADMM. This is our proposed ADMM
method to solve the triangle lasso. Since it is very
fast, we use it to conduct each evaluations in default.

� Triangle lasso-Dual. This is our proposed Dual
method to solve the triangle lasso. It is not efficient
when the dataset or the graph is large. We use it to
conduct evaluations on some moderate graphs.
As we have illustrated, triangle lasso is implemented
by our ADMMmethod defaultly.

Graph Construction and Metrics. If the dataset is a graph
dataset, triangle lasso use the graph directly. In some cases,
if the dataset is not a graph, the graph is usually generated
by using the following rules in default:

� If the dataset has missing values, those missing
values are filled by the mean values of the corre-
sponding features.

� Each instance is represented by a vertex.
� Given any two arbitrary vertices, if one of them is the

k-nearest peers (k � 1) of the other one, there is an
edge between them.

Additionally, we evaluate the prediction accuracy by using
the Mean Square Error (MSE). The small MSE leads to the
highly accurate prediction. Given a dataset with imperfect
data, if an algorithm yields smaller MSE than other algo-
rithms, its prediction is thus more accurate than others.
Therefore, it is more robust to the imperfect data than others.
We record the run time (seconds) to evaluate the efficiency.

7.2 Prediction Tasks

Datasets. The empirical studies are mainly conducted on
the following four datasets. The statistics of those datasets
are presented in Table 2. It is worth noting that all of them
contain many missing values. Those missing values are
filled by using zeros in the raw datasets. In all experiments,
the values of each feature is standardized to zero mean and
unit variance. We use 5-fold cross validation to evaluate
the robustness of triangle lasso. For each instance in the
validation dataset, we find its nearest neighbour from the
training dataset. Then, we use the weight of the nearest
neighbour to conduct prediction and evaluate the robust-
ness of the solutions.

� Real estate transactions (RET). The dataset is the real
estate transactions over a week period in May 2008
in the Greater Sacramento area.3 The latitude and
longitude features of each house are used to con-
struct the graph. Each house is profiled by using fea-
tures: number of beds, number of baths and square feet.
The response is the sales price. The task is to predict
price of a house. 17 percent of the house sales are
missing at least one of the features.

� AusOpen-men-2013 (AOM). A collection containing
the match statistics for men at the Australian Open
tennis tournaments of the year 2013.4 Each instance
has 38 features, and the response is Result. The task
is to predict the winner for two tennis players. This
data matrix contains 17.1 percent missing values.

� wiki4HE. Survey of faculty members from two
Spanish universities on teaching uses of Wikipedia5

[28]. We pick the first question and its answer from
each module, and finally obtain 13 features, namely
PU1, PEU1, ENJ1, QU1, VIS1, IM1, SA1, USE1, PF1,
JR1, BI1, INC1, and EXP1. The response is USER-
WIKI. The task is to predict whether a teacher regis-
ter an account in wikipedia site. The data matrix
contains 16.6 percent missing values.

� Dow Jones Index (DJI). This dataset contains weekly
data for the Dow Jones Industrial Index.6 Each
instance is profiled by using features: open (price),
close (price) and volume. The response is next_
week_open (price). The task is to predict the open price
in the next week. The raw dataset does not contain
imperfect data. We thus randomly pick 20 percent
values in the datamatrix, and set themby using zeros.

TABLE 2
Statistics of the Datasets

Datasets Data size Dimensions Missing values

RET 985 4 17%
AOM 126 38 17:1%
wiki4HE 913 13 16:6%
DJI 750 4 20%
cpusmall 8,192 12 20%

3. https://support.spatialkey.com/spatialkey-sample-csv-data
4. http://archive.ics.uci.edu/ml/datasets/Tennis+Major+Tourname
nt+Match+Statistics
5. http://archive.ics.uci.edu/ml/datasets/wiki4HE
6. http://archive.ics.uci.edu/ml/datasets/Dow+Jones+Index
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� cpusmall. This dataset is a collection of a computer
systems activity measures, which is obtained from
LIBSVMwebsite.7 Each instance is profiled by 12 fea-
tures. The task is to predict the portion of time (%)
that cpus run in user mode. In the experiment, we
randomly pick 20 percent values in the data matrix,
and fill those values to be zeros as the imperfect data.

Results for RET. Each row ofX represents the weights of a
house. B represents the prices of houses. Additionally, each
vertex is connected with its 10 nearest neighbours via the
latitude and longitude, and there exist 28521 triangles in the
network.

First, we need to find the best a. As illustrated in Fig. 5a,
the comparison of MSE is conducted by varying a. With the
increase of a, the houses located in a same region begin to
use the similar or identical weights. The quality of the pre-
dictions is thus improved. When a is too large, the houses
located in different regions also use the similar weights,
resulting in the decrease of the accuracy of the prediction.
In the experiment, we set a ¼ 0:02 for the triangle lasso, and
set a ¼ 0:1 for the network lasso.

Second, we evaluate the robustness of the triangle lasso
by varying the missing values. The missing values are filled
by using the data generated from aGauss distributionwhose
mean ism ¼ 0, and standard deviation s is varied from 1 to 5.
‘mean’ represents those missing values are filled by zeros.
As illustrated in Fig. 5b, the triangle lasso yields a better
prediction than the network lasso. The reason is that we use
the shared neighbouring relation to decrease the impact
of the missing values. We present the predictions in Fig. 5c.
The blue or red markers on the map represent the better
or the worse predictions yielded by the triangle lasso, res-
pectively. The distribution of those predictions are presented
in Fig. 5d. We find that many predictions are comparable for
the triangle lasso and the network lasso, but the triangle lasso
yieldsmore better predictions than theworse predictions.

Third, we evaluate the efficiency of our methods by vary-
ing the number of neighbours for each vertex. Our method,
which yields the accurate solution, is denoted by Dual.
As illustrated in Fig. 6a, our methods are more efficient
than the basic ADMM and the network lasso. Meanwhile,
it can be seen that the Dual method is more efficient than our
ADMMmethod when the number of neighbours is not large
(� 10). But, the superiority is decreased with the increase
of the number of the neighbours. When we use the ridge

regression model, the Dual method yields X� by solving a
large number of linear equations, which is time-consuming
for a large and dense graph. Additionally, we build the
network in a different way. We set a threshold 10 km, and
connect the neighbouring vertices whose distance is less
than the threshold. The network, which is yielded by using
the neighbours of vertices, is denoted by Net1. Similarly, the
network, which is yielded by using the threshold, is denoted
by Net2. We evaluate the efficiency of our methods by vary-
ing the number of edges in those networks. As illustrated
in Fig. 6b, both methods perform better in the Net1 than in
the Net2. The efficiency of the Dual method is decreased
sharply in the Net2. The reason is that the vertices in the
Net2 tend to completely connect with their neighbours.
Thus, their weights are highly non-separable with the
weights of their nighbours, which decreases the efficiency of
the Dualmethod sharply.

Results for AOM,wiki4HE, DJI and cpusmall. First, we evalu-
ate the robustness of triangle lasso. The missing values are
still filled by using the data generated from a Gauss distribu-
tion whose mean is m ¼ 0, and standard deviation s is varied
from 1 to 5. ‘mean’ represents those missing values are filled
by zeros. As illustrated in Fig. 7, triangle lasso yields a lower
MSE than network lasso in each experiment, which shows the
robustness of triangle lasso.8 Second, we test the efficiency of
our methods. NoN represents the number of neighbours for
each vertex. As shown in Table 3, our methods are more effi-
cient than their counterparts. Note that the ADMM method
outperforms the Dual method when the graph is dense.
That is, the average of the number of neighbours, i.e., NoN is
relatively large. When a graph is dense, the optimization
variables are highly non-separable. In the case, it is time-
consuming to be solved. Since the Dual method want to
return a highly accurate solution, it needs more time than the
ADMM. But, when the graph is sparse, many of the optimiza-
tion variables are separable, which makes the optimization
problem easy to be solved. In the case, theDualmethod is per-
formed efficiently, and thus outperforms theADMMmethod.

7.3 Convex Clustering

Dataset and Settings.We aim to obtaining the cluster paths on

the moon dataset9 and the iris dataset.10 The moon dataset
contains 373 instances, and each instance has two features.

Fig. 5. The illustration of the best a, and the comparison of the prediction accuracy with the best a. Triangle lasso is more robust than the network
lasso because of the lower MSE.

7. https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/regre
ssion.html#cpusmall

8. It is out of memory for network lasso to handle wiki4HE. We
degenerate triangle lasso to the settings of network lasso, and use our
methods to obtain the MSE corresponding to network lasso.

9. https://cs.joensuu.fi/sipu/datasets/jain.txt
10. http://archive.ics.uci.edu/ml/datasets/Iris
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The iris dataset contains 150 instances, and each instance
has four features. In the experiment, the values in each feature
is standardized to zero mean and unit variance. We run
our ADMM method to obtain a cluster path, and compare it
with the state-of-the-art convex clustering method, i.e., AMA.
Consider the moon dataset. The network is built by connect-
ing a vertex with its 50 nearest neighbours. The initial a is 100,
and it is increased by multiplying a step size. The step size is
initialized to be 1 and is increased by 2 at each iteration.
Similarly, consider the iris dataset. The network is built by
connecting a vertex with its 10 nearest neighbours. The initial
a is 0.01, and it is increased by multiplying a step size.

The step size is initialized to be 1 and is increased by 0.1 at
each iteration. In order to draw the cluster path for the iris
dataset, we pick and visualize the first and second principal
components by using the Principal Component Analysis
method.

Results. As illustrated in Fig. 8, the triangle lasso yields
sightly better cluster paths than AMA with the comparable
efficiency. The reason is that triangle lasso uses the neigh-
bouring information for the vertices to find the cluster mem-
bership. In the network science, the neighbours are usually
viewed as the most valuable information for a vertex [12].
Therefore, triangle lasso outperforms AMA, and yields a
better cluster path.

7.4 Efficiency in Various Networks

Dataset and Networks. The dataset is yielded from a Gauss
distribution whose mean is varied as �5, �3, 0, 3, and 5,
and its standard deviation is 1. We still use ridge regression
to test the efficiency of our methods. The Gauss distribution
generates 20 instances in each setting. The total number
of instances in the dataset is 100. Each instance, e.g., Ai is a
5 dimensional row vector. Besides, the response for an
instance, e.g., yi is set to be the mean of its Gauss distri-
bution. g ¼ 0:01, and a ¼ 0:01. We evaluate the efficiency of
our methods by varying the average degree in the classic
networks: the random network, the small world network

Fig. 7. The comparison of theMSE by varying the imperfect data. It shows that triangle lasso is more robust than network lasso because of its lowMSE.

TABLE 3
CPU Seconds Consumed When Handling AOM, wiki4HE, DJI, and cpusmall

Algorithms basic ADMM Network lasso Triangle lasso-ADMM Triangle lasso-Dual

AOM a ¼ 100,NoN ¼ 3 576 397 23 12
a ¼ 100,NoN ¼ 4 880 607 32 29
a ¼ 100,NoN ¼ 5 1,100 824 37 84
a ¼ 200,NoN ¼ 5 1,124 699 43 76
a ¼ 300,NoN ¼ 5 1,211 700 43 79
a ¼ 500,NoN ¼ 5 1,547 748 56 81

wiki4HE a ¼ 100,NoN ¼ 3 out of memory out of memory 1,864 337
a ¼ 100,NoN ¼ 4 out of memory out of memory 593 2,020
a ¼ 50, NoN ¼ 3 out of memory out of memory 1,305 368
a ¼ 200,NoN ¼ 3 out of memory out of memory 2,854 341

DJI a ¼ 100,NoN ¼ 5 132 26 3 6
a ¼ 50, NoN ¼ 5 99 54 2 31
a ¼ 100, NoN ¼ 10 499 54 12 32
a ¼ 1,NoN ¼ 10 100 54 2 31

cpusmall a ¼ 100,NoN ¼ 2 out of memory out of memory 7,248 1;175
a ¼ 200,NoN ¼ 3 out of memory out of memory 8,940 5;600
a ¼ 200,NoN ¼ 4 out of memory out of memory 10;276 15,940
a ¼ 500,NoN ¼ 4 out of memory out of memory 11;745 16,874

Fig. 6. The comparison of the efficiency. The Dual method is more
efficient than the ADMM method in a sparse graph but less efficient in a
dense graph.
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and the scale free network. Besides, we yield a network
where there is a Completely Connected Community (C3) in
the network.

Results. As illustrated in Fig. 9, our ADMM is more
efficient than the Dual method. The reason is that our Dual
method has to solve a large number of linear equations,
which is time-consuming. Furthermore, we can obtain the
following observations. (1) Both our ADMM and Dual
methods have the similar efficiency in the random and
small world networks according to Fig. 9a. (2) Our Dual
method is performed very fast in the scale free network. It
shows that our Dual method is suitable to solve a large-scale
problem in the scale free network according to Figs. 9b and
9d. But, our ADMM method in the scale free network has
the comparable efficiency in the random and small world
networks. (3) Our Dual method has a relatively low scal-
ability in the C3 network according to Figs. 9c and 9d.

If some vertices are completely connected in a network, the
efficiency of our Dual method will be decreased sharply.
The reason is that the weights of a vertex are highly non-
separable with that of their neighbours in the completely
connected community. This fact illustrates that we should
avoid to perform the Dual method in such a network.

7.5 Community Detection

Dataset and Settings. First, we synthetize four graph data-
sets, and present that the performance of triangle lasso
for community detection. Second, some real graph data-
sets with ground truth are provided in the SNAP reposi-
tory [29], [30]. We use two of them: com-Amazon11 and
com-DBLP12 to test the performance of triangle lasso
quantitatively. The statics of those datasets are illustrated
in Table 4.

Comparing with triangle lasso, we conduct the commu-
nity detection by using the state-of-the-art methods: HKs
[31], PPRs [31] and LEMeasy [31], which are implemented
in the open source project [32]. Additionally, we use the F1

score to test the performance of the community detection

Fig. 8. The comparison of the cluster paths.

Fig. 9. The comparison of the run time by varying the average degree in the first three subfigures, and fixing it to be 16 in the last subfigure.

TABLE 4
Statistics of the Network Datasets with Ground Truth

Datasets # Nodes # Edges # Communities

com-Amazon 334,863 925,872 75,149
com-DBLP 317,080 1,049,866 13,477

Fig. 10. The community detection is conducted via the triangle lasso by using the ADMMmethod.

11. https://snap.stanford.edu/data/com-Amazon.html
12. https://snap.stanford.edu/data/com-DBLP.html
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quantitatively. The quantitative metric is the F1 score, which
is defined by

F1 ¼ 2 � precision� recall

precisionþ recall
:

More details about the metric are recommended to refer
to [33]. Note that the previous methods HKs, PPRs and
LEMeasy need to set a seed for each a community. Since we
know the ground truth of the communities, we randomly
pick a member of a community, and then set it as the seed
for the community. Thus, we obtain an F1 for the commu-
nity. Then, the average of those F1 scores for all communi-
ties is used to represent the F1 score based on the seed.
Repeating the procedure 10 times, we record the mean and
variance of those averaged F1 scores to evaluate the per-
formance of all the methods quantitatively.

Results.As illustrated in Fig. 10, the triangle lasso is able to
detect multiple communities. Figs. 10a, 10b, and 10c show
that it performs very well when the network consists of
multiple communities. Fig. 10d shows that the triangle lasso
still finds the local community structure of the network
when the community structure is not obvious.

Quantitatively, as illustrated in Fig. 11a, our dual
method obtains the highest F1 scores, outperforming the
state-of-the-art methods significantly. It is highlighted
that both our methods including the dual method and the
ADMM method yield the deterministic solutions, which
are not impacted by the initial values to start them. Thus, the
variance of the solutions yielded by our methods is 0. But,
the previous methods are heuristic, and their solutions are
sensitive to the seedswhich are selected before running them.

Furthermore, we evaluate the robustness of the solution
by performing those methods on the perturbed datasets.
The perturbation includes the following steps.

� We randomly select a node which is a member of a commu-
nity, and a node which is a non-member of the community.

� An edge is generated to connect those two nodes.
The number of those member nodes is controlled to be

less than 1 percent of the total number of the nodes in the
selected community. Fig. 11b shows that both our ADMM
method and our dual method outperform their counterparts
under the perturbation strategy. The reason is that triangle
lasso uses the neighbouring information to yield a robust
solution, and thus decreases the impact of the perturbation.

8 CONCLUSION

It is challenging to simultaneously clustering and simul-
taneously in practical datasets due to the imperfect data.

In the paper, we formulate the triangle lasso as a convex
problem. After that, we develop the ADMM method to
obtain the moderately accurate solution. Additionally,
we transform the original problem to be a second-order
cone programming problem, and solve it in the dual space.
Finally, we conduct extensive empirical studies to show the
superiorities of triangle lasso.
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